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1.   A Sketch of e-p Instability

     Basic Mechanism - Two Stream Instability

1.1 Physical Mechanism - A Simple Picture

(1) The instability is caused by the resonant transverse 
motion between the electrons and the proton beam.

             

Ey Ey Ey

p    e

vp

Protons oscillate in betatron frequency ωβ .

The electron bounce frequency inside the proton beam is

                        ω λe e pc a r≈ ( ) 2  ,

c = speed of light, a = proton beam radius,
re= classical electron radius, λp= proton line density.

Stable for v vp e=  and zero external force.
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(2) When v vp e≠ , instability may occur.

Resonance condition:   2π ω λl v vp e e p p≈ − ∝  .

When ve = 0 and vp ≠ 0, 2π ω λl vp e p p≈ ∝  for 
instability.  In the beam frame v ve p= − ,

                 

A.ve

p   e

lp

ω ωβ << e for intense beams, protons move only a fraction
of their oscillation in one electron bounce.

After one electron bounce:
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(3) Why need v vp e≠  for instability?
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δF  is sinusoidal - can drive electrons into resonance.
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(4) Has many experimental observations.

Has good linear analytical theory for continuous beams
and very simple analytical theory for bunched beams.

1.2 Electron Sources

Background gas scattering

H- Injection and beam-foil scattering (localized)

Secondary emission from lost protons

Electron multipactoring

Almost no analytical theory for combined electron generation
and beam dynamics.

1.3  Possible Candidates

ISR, BEVATRON, PSR, AGS, AGS Booster, ISIS,
KEK-PS Booster

SNS Ring, JHF Booster, ESS Ring, Proton Driver

Not seen in AGS and ISIS.

Not certain in KEK-PS Booster. (per I. Yamane in [2])



      

T. F. Wang: e-p Instability                                                                                                                        Snowmass 2001
5

2. Experimental Observations [1-3, 9, 15, 19, 26, 28-30,
32-37, 40, 41, 46]

Fast growing transverse oscillations of proton beam
(accompanied by fast beam loss in PSR and AGS Booster)

In bunched beams, see broad oscillation frequency spectra with
central frequencies ∝ λp .

Threshold and growth rate sensitive to vacuum (not in PSR)

Threshold and growth rate depend on clearing electrode voltage

Threshold depends on bunching rf voltage

Electron detectors or electrodes collect large amount of
electrons when beam becomes unstable

Examples of Observations at PSR

  Bunch beam instability signals

 Vertical oscillations compared with beam density

Peak frequency vs. intensity

Electron signals

    Figures from R. Macek and M. Plum
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3. Theoretical Developments [1, 2, 4-8, 10-14, 16-25, 27, 31,
32, 36, 38-45]

3.1  Analytical Studies

"Classical" Continuous Beam Analysis [7, 11, 12, 14, 21, 23, 27,
36, 38, 42-46]

Based on the dispersion relation derived from kinetic theory or
centroid model of uniform line densities (frequency domain
analysis):

 ( ) ( )ω ω ω ω ω ω ωβe p e p e pn f g2 2 2 2 2 2 2− + − −[ ] =Ω  ,

and its variations, where

ω p  = proton bounce frequency due to electrons (when ωβ = 0),

 ω  = frequency of the e-p mode,

 n = azimuthal harmonic of the e-p mode,

 Ω  = proton revolution frequency,

gp= function of proton oscillation frequency spread,
    = 1 at zero spread,
fe= function of electron oscillation frequency spread,
    = 1 at zero spread.

Growth rate is given by Im( ) > 0ω , instability threshold is found
by solving Im( ) = 0ω .
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Analysis for Long Bunched Beam [4]

Based on centroid model with non-uniform line densities

Treats the problem as initial value problem (time domain
solution)

The solution for the proton centroid Y z tp ( , )′ :

Y z t J z t z v z z v

i t z v t z v z v

J z t z v iJ z

p p p

p p p e p

p

( , ) ~ ( ) [ ( )] ( ) ( )

( ) ( ) ( )

( )( ) ( )

′ ′ − ′{ } ′ ′

× −{ − ′ − − ′ − ′

+ ′ − ′ − ′ }

ω ξ

ω

ω

β

β

β

3 1 4

2 4

Φ

∆ ∆     exp

            ,

where

J z i
x v x

W x
x x dxe p

z vp

( )
( ) ( )

( )
( ) ( )

/

′ =
′

∫ ω ξ2

0

Φ Ψ  ,

t = time, i = −1, ξ λ γωβ( ) ( ) ( )′ = ′z r c z ap e2 2 2 ,

′z = axial coordinate in the beam frame (origin at bunch head),
rp= classical proton radius, ∆ p, ∆e= the oscillation frequency
spreads among the protons and electrons, respectively,
γ = − −( )1 1 2v c , W(x) = Wronskian of Φ and Ψ;
Φ, Ψ= linear independent solutions of the equation

d Y

dt
t Ye

2

2
2 0+ =ω ( )  .
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3.2  Computer Simulations

Continuous Beams [1, 5, 13, 16, 22]

Thorough 3d ∆f simulations based on self-consistent
equilibrium models compute mode configurations, instability
thresholds and growth rates for both linear and nonlinear growth
regimes.

Figure from H. Qin et al. [5]
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Single-Bunch Beam [1, 2, 17, 31]

1.5d simulations using centroid model and a simple electron SE
model produce plausible simulated BMP signals.  Main results:

e-p mode grows in both space and time.  Frequency ∝ λp .

Proton beam carries the memory of oscillations.  Resonant  
coherent electron motion develops in a few electron bounces.  
Multi-turn trapping of electrons is not a necessary condition 
for instability, but does lower the threshold.

Figure from T. Wang [31]
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Electron Cloud Study [1, 6]

2d or 3d computations of electron dynamics using more
detailed SE models for equilibrium proton beams.  Produced
electron detector signals and energy spectra similar to the
observations in PSR.

Figure from M. Furman and M. Pivi [6]
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4.  Possible Preventions and Remedies

Good Vacuum  Has pronounced effect in ISR.
Affects the beam stability in PSR little.

Landau Damping Increase tune spread (more momentum 
spread or nonlinear lenses), or, couple x-y
motion at the cost of emittance growth.

Clearing Electrodes Effective in ISR.

Beam Shaking Worked at ISR, but not for PSR.
Causes emittance growth.

Active Damping Partly worked in BEVATRON.

Solenoid Demonstrated in KEK e+-e- collider
for reducing trapped electrons.

TiN Coating Decreases SEY.
Seen at PSR as reduced number of 
electrons collected on the beam pipe.
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5.  ISIS - PSR Puzzle

ISIS and PSR have some similarities.  Still don't know why e-p
instability not seen in ISIS for both bunched and unbunched
beams at 1013 ppp.

Conjecture: the shielding due to the rf-cage (wires) may reduce
trapped electrons (?)

Photo from I. Gardner
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Figure from S. Kurennoy
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